Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Raja Dey, ${ }^{\text {a }}{ }^{*}$ Kakoli Mukharjee, ${ }^{\text {b }}$ Vratislav Langer ${ }^{c}$ and Priyobroto Roychowdhury ${ }^{\text {b }}$

${ }^{\text {a C Centre for Structural Biology, Department of }}$ Chemistry and Bioscience, Chalmers University of Technology, Box 462, Gothenburg 40530, Sweden, ${ }^{\text {b }}$ Department of Physics, University of Calcutta, 92 APC Road, Calcutta 700009, India, and ${ }^{\mathrm{c}}$ Subdivision of Inorganic Environmental Chemistry, Division of Materials and Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Correspondence e-mail:
raja.dey@chembio.chalmers.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
H -atom completeness 53%
Disorder in solvent or counterion
R factor $=0.063$
$w R$ factor $=0.170$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A titanium salicylate, $\mathrm{Na}_{4}\left[\mathrm{Ti}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{3}\right]_{2} \cdot \mathbf{1 1} \mathrm{H}_{2} \mathrm{O}$

The title compound, tetrasodium bis[tris(salicylatotitanate(IV)] undecahydrate, $\mathrm{Na}_{4}\left[\mathrm{Ti}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{3}\right]_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}$, crystallizes with two titanium salicylate complex ions, four sodium ions and 11 water molecules in the asymmetric unit. One water O atom is disordered over two positions, having 0.74 (5) and 0.26 (5) occupancy. Both Ti atoms and three sodium ions adopt a distorted octahedral coordination by O atoms. The fourth sodium ion has a distorted trigonal-bipyramidal coordination by oxygen, sharing one edge with a sodium coordination octahedron.

Comment

Salicylic acid is prepared commercially by heating sodium phenolate with carbon dioxide under pressure to form sodium salicylate, which is treated with sulfuric acid to liberate salicylic acid. Sodium salicylate is used to a small extent as a food preservative and as an antiseptic agent in mouthwashes and toothpastes. Phenyl salicylate is used in medicine as an antiseptic and antipyretic agent. Salicylic acid has multifunctional properties to help with a variety of skin problems including acne, pimples and blemishes. It is an excellent exfoliant and at the same time has good anti-irritant qualities as well as anti-inflammatory properties (Patterson \& Lawrence, 2002). Another positive feature of salicylic acid is that it helps with the treatment of skin ailments because of its antimicrobial properties. Salicylic acid is also known to improve skin thickness, skin barrier functions, collagen production and cell renewal (Pierard et al., 1999). It is well known for its biological activity, which is related to its ability to bind metal ions. Salicylate metal complexes are more effective, as the toxicity problems related to the injection of salicylic acid are diminished. Titanium salicylate as a mixture with titanium dioxide and titanium peroxide, used to form a protective film on the skin against irritation and repeated wetting, is suitable for the prevention of urinary rash and nappy rash in children.

Received 10 June 2005
Accepted 4 July 2005
Online 9 July 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
The asymmetric unit, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.]

Figure 2

The packing, viewed along the b axis.
In the title compound three salicylate ligands coordinate to each Ti^{4+} ion, through their carboxylic and phenolic O atoms. The conformations of the two independent complex anions contained in the asymmetric unit are similar. The coordination of Ti by O may be described as distorted octahedral. Fig. 1 represents a three-dimensional view of the entire asymmetric unit with the atom numbering scheme. The $\mathrm{Ti}-\mathrm{O}$ distances (Table 1) range between 1.846 (4) and 2.077 (4) \AA in complex A, and between 1.847 (4) and 2.042 (4) \AA in complex B. Similar $\mathrm{Ti}-\mathrm{O}$ distances are found in many recently determined crystal structures of titanium complexes (Honda et al., 2003; Thurston et al., 2004). The bite angles of the ligands (Table 1) range between 84.3 (2) and 85.1 (2) ${ }^{\circ}$. The $\mathrm{C}-\mathrm{O}$ distances are similar to those in salicylic acid itself (Sundaralingam \& Jensen, 1965; Cochran, 1953). The average value of the angles made by the carboxylic group at the C atom of the benzene ring is 119.4° for both anions. Corresponding angles with values of 117° (Cochran, 1953) and 116° (Sundaralingam \& Jensen, 1965) are found in salicylic acid. The dihedral angles
among the three mean planes passing through titanium and the three carboxylic and phenolic groups attached to the three aromatic rings vary from 66.9 (2) to 88.7 (2) ${ }^{\circ}$. As in the optimized geometry of salicylic acid adsorbed on titanium oxide surfaces, here also an aromatic plane lies above the Ti atom and prevents interaction between titanium and one of the H atoms of the aromatic ring. The dihedral angles among the three aromatic rings of the salicylate ligands range from 56.6 (3) to 82.9 (3) ${ }^{\circ}$.

In addition to the two titanium salicylate anionic complexes, the asymmetric unit contains four sodium ions and 11 water molecules, one of which is disordered over two positions. The Na atoms also have distorted octahedral coordination by O atoms, with the exception of atom Na 4 , which is coordinated by five O atoms, sharing one edge of its trigonal bipyramid with the octahedron around Na 1 . The octahedron around Na 2 also shares one edge with the octahedron around Na 3 . The packing, with stacking of aromatic rings, is shown in Fig. 2, where a layered structure of sodium ions parallel to the $a b$ plane is revealed.

Experimental

A chemically pure sample of titanium perchlorate was obtained from the Chemistry Laboratory of the University College of Science, Calcutta. To a well stirred mixture of titanium(IV) perchlorate $(2.23 \mathrm{~g}, 0.005 \mathrm{~mol})$ and salicylic acid $(2.28 \mathrm{~g}, 0.0165 \mathrm{~mol})$ in water $(20 \mathrm{ml})$, a dilute solution of sodium hydroxide $(1.32 \mathrm{~g}, 0.033 \mathrm{~mol})$ in water (30 ml) was added dropwise with stirring over a period of 1.5 h . When the pH was about 4.5 the solution assumed a yellow colour. This solution was then allowed to evaporate slowly on a warm water bath to yield small orange-yellow crystals. Recrystallization from water by very slow evaporation at room temperature gave crystals suitable for X-ray analysis.

Crystal data

$\mathrm{Na}_{4}\left[\mathrm{Ti}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\right)_{3}\right]_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1180.37$
Monoclinic, $P 2_{1} / n$
$a=17.572$ (3) A
$b=9.588$ (5) A
$c=30.126$ (3) \AA
$\beta=96.60(2)^{\circ}$
$V=5042(3) \AA^{3}$
$Z=4$
$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.60 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
9046 measured reflections
8865 independent reflections
4399 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.170$
$S=0.93$
8865 reflections
706 parameters
D_{m} measured by flotation in benzene/bromoform
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=2.2-25.0^{\circ}$
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rhomb, yellow
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

$$
\theta_{\max }=25.0^{\circ}
$$

$h=-20 \rightarrow 20$
$k=0 \rightarrow 11$
$l=0 \rightarrow 35$
3 standard reflections frequency: 120 min intensity decay: none

```
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.083 P)^{2}\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\) 。
\(\Delta \rho_{\text {max }}=0.85 \mathrm{e}^{\text {A }}{ }^{-3}\)
\(\Delta \rho_{\max }=0.8 \AA_{\min }=-0.38 \mathrm{e}^{-3}\)
```

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Ti} A-\mathrm{O} 1 A$	$1.846(4)$	$\mathrm{O} 1 A-\mathrm{C} 1 A$	$1.353(6)$
$\mathrm{Ti} A-\mathrm{O} 3 A$	$1.869(4)$	$\mathrm{O} 2 A-\mathrm{C} 7 A$	$1.288(6)$
$\mathrm{Ti} A-\mathrm{O} 5 A$	$1.875(4)$	$\mathrm{O} 4 A-\mathrm{C} 14 A$	$1.297(7)$
$\mathrm{Ti} A-\mathrm{O} 6 A$	$2.011(4)$	$\mathrm{O} 3 A-\mathrm{C} 8 A$	$1.358(6)$
$\mathrm{Ti} A-\mathrm{O} 4 A$	$2.032(4)$	$\mathrm{O} A A-\mathrm{C} 21 A$	$1.302(6)$
$\mathrm{Ti} A-\mathrm{O} 2 A$	$2.077(4)$	$\mathrm{O} 5 A-\mathrm{C} 15 A$	$1.349(6)$
$\mathrm{Ti} B-\mathrm{O} 5 B$	$1.847(4)$	$\mathrm{O} 2 B-\mathrm{C} 7 B$	$1.293(6)$
$\mathrm{Ti} B-\mathrm{O} 3 B$	$1.864(4)$	$\mathrm{O} 1 B-\mathrm{C} 1 B$	$1.345(6)$
$\mathrm{Ti} B-\mathrm{O} 1 B$	$1.875(3)$	$\mathrm{O} 3 B-\mathrm{C} 8 B$	$1.340(6)$
$\mathrm{Ti} B-\mathrm{O} 4 B$	$2.029(4)$	$\mathrm{O} 4 B-\mathrm{C} 14 B$	$1.296(7)$
$\mathrm{Ti} B-\mathrm{O} 6 B$	$2.042(3)$	$\mathrm{O} 5 B-\mathrm{C} 15 B$	$1.352(6)$
$\mathrm{Ti} B-\mathrm{O} 2 B$	$2.042(4)$	$\mathrm{O} 6 B-\mathrm{C} 21 B$	$1.290(6)$
$\mathrm{O} 5 A-\mathrm{Ti} A-\mathrm{O} 6 A$	$84.29(16)$	$\mathrm{O} 2 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	$119.5(5)$
$\mathrm{O} 3 A-\mathrm{Ti} A-\mathrm{O} 4 A$	$84.52(16)$	$\mathrm{O} 4 A-\mathrm{C} 14 A-\mathrm{C} 13 A$	$119.2(5)$
$\mathrm{O} 1 A-\mathrm{Ti} A-\mathrm{O} 2 A$	$84.32(16)$	$\mathrm{O} 6 A-\mathrm{C} 21 A-\mathrm{C} 20 A$	$119.2(5)$
$\mathrm{O} 3 B-\mathrm{Ti} B-\mathrm{O} 4 B$	$85.12(16)$	$\mathrm{O} 2 B-\mathrm{C} 7 B-\mathrm{C} 6 B$	$119.2(5)$
$\mathrm{O} 5 B-\mathrm{Ti} B-\mathrm{O} 6 B$	$85.14(15)$	$\mathrm{O} 4 B-\mathrm{C} 14 B-\mathrm{C} 13 B$	$119.4(5)$
$\mathrm{O} 1 B-\mathrm{Ti} B-\mathrm{O} 2 B$	$84.63(15)$	$\mathrm{O} 6 B-\mathrm{C} 21 B-\mathrm{C} 20 B$	$119.7(5)$

All aromatic H atoms were included in a riding-model approximation, with a C-H distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Most water H atoms were located in a difference Fourier synthesis
but, as refinement of their positions was unstable, they were removed from the final model.

Data collection: XDS (Kabsch, 1988); cell refinement: XDS; data reduction: $X D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2003).

References

Brandenburg, K. (2005). DIAMOND. Version 3.0c. Crystal Impact GbR, Bonn, Germany.
Cochran, W. (1953). Acta Cryst. 6, 260-268.
Honda, A., Waltz, K. M., Carroll, P. J. \& Walsh, P. J. (2003). Chirality, 15, 615621.

Kabsch, W. (1988). J. Appl. Cryst. 21, 916-932.
Patterson, J. R. \& Lawrence, J. R. (2002). Arch. Intern. Med. 162, 1531-1532.
Pierard, G. E., Kligman, A. M., Stoudemayer, T. \& Leveque, J. -L. (1999). Dermatology, 199, 50-53.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sundaralingam, M. \& Jensen, L. H. (1965). Acta Cryst. 18, 1053-1058.
Thurston, J. H., Kumar, A., Hofmann, C. \& Whitmire, K. H. (2004). Inorg. Chem. 43, 8427-8436.

